Skip to content Skip to sidebar Skip to footer

Find Latitude/longitude Coordinates Of Every Pixel In A Geotiff Image

I currently have a 171 x 171 image from a GeoTiff file (although in other cases, I might have much bigger images). My goal is to take each pixel in the image and convert to latitud

Solution 1:

Unfortunately, I couldn't find a better solution (yet) than looping over all the pixels. Here's my solution so far:

import glob
import os
import pickle
import sys

import gdal
import geopandas as gpd
import matplotlib
import matplotlib.pyplot as plt
from numba import jit
import numpy as np
from osgeo import osr
import PIL
from PIL import Image, TiffImagePlugin
from shapely.geometry import Point, Polygon, box
import torch


defpixel2coord(img_path, x, y):
    """
    Returns latitude/longitude coordinates from pixel x, y coords

    Keyword Args:
      img_path: Text, path to tif image
      x: Pixel x coordinates. For example, if numpy array, this is the column index
      y: Pixel y coordinates. For example, if numpy array, this is the row index
    """# Open tif file
    ds = gdal.Open(img_path)

    old_cs = osr.SpatialReference()
    old_cs.ImportFromWkt(ds.GetProjectionRef())

    # create the new coordinate system# In this case, we'll use WGS 84# This is necessary becuase Planet Imagery is default in UTM (Zone 15). So we want to convert to latitude/longitude
    wgs84_wkt = """
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.01745329251994328,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4326"]]"""
    new_cs = osr.SpatialReference()
    new_cs.ImportFromWkt(wgs84_wkt)

    # create a transform object to convert between coordinate systems
    transform = osr.CoordinateTransformation(old_cs,new_cs) 
    
    gt = ds.GetGeoTransform()

    # GDAL affine transform parameters, According to gdal documentation xoff/yoff are image left corner, a/e are pixel wight/height and b/d is rotation and is zero if image is north up. 
    xoff, a, b, yoff, d, e = gt

    xp = a * x + b * y + xoff
    yp = d * x + e * y + yoff

    lat_lon = transform.TransformPoint(xp, yp) 

    xp = lat_lon[0]
    yp = lat_lon[1]
    
    return (xp, yp)


deffind_img_coordinates(img_array, image_filename):
    img_coordinates = np.zeros((img_array.shape[0], img_array.shape[1], 2)).tolist()
    for row inrange(0, img_array.shape[0]):
        for col inrange(0, img_array.shape[1]): 
            img_coordinates[row][col] = Point(pixel2coord(img_path=image_filename, x=col, y=row))
    return img_coordinates


deffind_image_pixel_lat_lon_coord(image_filenames, output_filename):
    """
    Find latitude, longitude coordinates for each pixel in the image

    Keyword Args:
      image_filenames: A list of paths to tif images
      output_filename: A string specifying the output filename of a pickle file to store results

    Returns image_coordinates_dict whose keys are filenames and values are an array of the same shape as the image with each element being the latitude/longitude coordinates.
    """
    image_coordinates_dict = {}
    for image_filename in image_filenames:
        print('Processing {}'.format(image_filename))
        img = Image.open(image_filename)
        img_array = np.array(img)
        img_coordinates = find_img_coordinates(img_array=img_array, image_filename=image_filename)
        image_coordinates_dict[image_filename] = img_coordinates
        withopen(os.path.join(DATA_DIR, 'interim', output_filename + '.pkl'), 'wb') as f:
            pickle.dump(image_coordinates_dict, f)
    return image_coordinates_dict

Those were my helper functions. Because this would take a long time, in find_image_pixel_lat_lon_coord I saved the results into a dictionary image_coordinates_dict which I wrote to a pickle file to save results.

Then the way I would use this is:

# Create a list with all tif imageryimage_filenames = glob.glob(os.path.join(image_path_dir, '*.tif'))

image_coordinates_dict = find_image_pixel_lat_lon_coord(image_filenames, output_filename='image_coordinates')

Post a Comment for "Find Latitude/longitude Coordinates Of Every Pixel In A Geotiff Image"