Find Latitude/longitude Coordinates Of Every Pixel In A Geotiff Image
I currently have a 171 x 171 image from a GeoTiff file (although in other cases, I might have much bigger images). My goal is to take each pixel in the image and convert to latitud
Solution 1:
Unfortunately, I couldn't find a better solution (yet) than looping over all the pixels. Here's my solution so far:
import glob
import os
import pickle
import sys
import gdal
import geopandas as gpd
import matplotlib
import matplotlib.pyplot as plt
from numba import jit
import numpy as np
from osgeo import osr
import PIL
from PIL import Image, TiffImagePlugin
from shapely.geometry import Point, Polygon, box
import torch
defpixel2coord(img_path, x, y):
"""
Returns latitude/longitude coordinates from pixel x, y coords
Keyword Args:
img_path: Text, path to tif image
x: Pixel x coordinates. For example, if numpy array, this is the column index
y: Pixel y coordinates. For example, if numpy array, this is the row index
"""# Open tif file
ds = gdal.Open(img_path)
old_cs = osr.SpatialReference()
old_cs.ImportFromWkt(ds.GetProjectionRef())
# create the new coordinate system# In this case, we'll use WGS 84# This is necessary becuase Planet Imagery is default in UTM (Zone 15). So we want to convert to latitude/longitude
wgs84_wkt = """
GEOGCS["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]],
PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,
AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]]"""
new_cs = osr.SpatialReference()
new_cs.ImportFromWkt(wgs84_wkt)
# create a transform object to convert between coordinate systems
transform = osr.CoordinateTransformation(old_cs,new_cs)
gt = ds.GetGeoTransform()
# GDAL affine transform parameters, According to gdal documentation xoff/yoff are image left corner, a/e are pixel wight/height and b/d is rotation and is zero if image is north up.
xoff, a, b, yoff, d, e = gt
xp = a * x + b * y + xoff
yp = d * x + e * y + yoff
lat_lon = transform.TransformPoint(xp, yp)
xp = lat_lon[0]
yp = lat_lon[1]
return (xp, yp)
deffind_img_coordinates(img_array, image_filename):
img_coordinates = np.zeros((img_array.shape[0], img_array.shape[1], 2)).tolist()
for row inrange(0, img_array.shape[0]):
for col inrange(0, img_array.shape[1]):
img_coordinates[row][col] = Point(pixel2coord(img_path=image_filename, x=col, y=row))
return img_coordinates
deffind_image_pixel_lat_lon_coord(image_filenames, output_filename):
"""
Find latitude, longitude coordinates for each pixel in the image
Keyword Args:
image_filenames: A list of paths to tif images
output_filename: A string specifying the output filename of a pickle file to store results
Returns image_coordinates_dict whose keys are filenames and values are an array of the same shape as the image with each element being the latitude/longitude coordinates.
"""
image_coordinates_dict = {}
for image_filename in image_filenames:
print('Processing {}'.format(image_filename))
img = Image.open(image_filename)
img_array = np.array(img)
img_coordinates = find_img_coordinates(img_array=img_array, image_filename=image_filename)
image_coordinates_dict[image_filename] = img_coordinates
withopen(os.path.join(DATA_DIR, 'interim', output_filename + '.pkl'), 'wb') as f:
pickle.dump(image_coordinates_dict, f)
return image_coordinates_dict
Those were my helper functions. Because this would take a long time, in find_image_pixel_lat_lon_coord
I saved the results into a dictionary image_coordinates_dict
which I wrote to a pickle file to save results.
Then the way I would use this is:
# Create a list with all tif imageryimage_filenames = glob.glob(os.path.join(image_path_dir, '*.tif'))
image_coordinates_dict = find_image_pixel_lat_lon_coord(image_filenames, output_filename='image_coordinates')
Post a Comment for "Find Latitude/longitude Coordinates Of Every Pixel In A Geotiff Image"