How To Treat Nan Or Non Aligned Values As 1s Or 0s In Multiplying Pandas Dataframes
I want to treat non aligned or missing (NaN, Inf, -Inf) values as 1s or 0s. df1 = pd.DataFrame({'x':[1, 2, 3, 4, 5], 'y':[3, 4, 5, 6, 7]}, index=['a', 'b', 'c', 'd', 'e']
Solution 1:
I think you need DataFrame.mul
with fillna
or combine_first
in solution 1
and 2
:
print (df1.mul(df2).fillna(df1))
x y z
a 1.03.0NaN
b 2.04.0NaNc3.05.0NaN
d 4.018.0NaN
e 5.028.0NaN
f NaNNaNNaN
print (df1.mul(df2).combine_first(df1))
x y z
a 1.03.0NaN
b 2.04.0NaNc3.05.0NaN
d 4.018.0NaN
e 5.028.0NaN
f NaNNaNNaN
print (df1.mul(df2).fillna(df2))
x y z
a NaNNaNNaN
b NaN4.03.0cNaNNaN4.0
d NaN18.05.0
e NaN28.06.0
f NaN5.07.0
print (df1.mul(df2).combine_first(df2))
x y z
a NaNNaNNaN
b NaN4.03.0cNaNNaN4.0
d NaN18.05.0
e NaN28.06.0
f NaN5.07.0
Solution with fill_value=1
in DataFrame.mul
for 3
output:
print (df1.mul(df2, fill_value=1))
x y z
a 1.03.0NaN
b 2.04.03.0c3.05.04.0
d 4.018.05.0
e 5.028.06.0
f NaN5.07.0
Solution 2:
Case 1 Replace missing or misaligned value in df1 with 1
>>> df1.reindex(index=df1.index.union(df2.index),
columns=df1.columns.union(df2.columns)).fillna(1)
xyza131b241c351d461e571f111
Append the snippet above with .mul(df2)
if desired.
Case 2 Replace missing or misaligned value in df2 with 1
>>> df2.reindex(index=df2.index.union(df1.index),
columns=df2.columns.union(df1.columns)).fillna(1)
xyza111b113c114d135e146f157
Append the snippet above with .mul(df1)
if desired.
Case 3 Replace any missing or misaligned value with 1 if there is a value in the other DF.
>>> df1.mul(df2).combine_first(df1).combine_first(df2)
x y z
a 13NaN
b 243c354
d 4185
e 5286
f NaN57
Post a Comment for "How To Treat Nan Or Non Aligned Values As 1s Or 0s In Multiplying Pandas Dataframes"