Python - How To Load Nested Dictionary Into Pandas Dataframe?
I have a long nested dictionary structured like below, how can I go about loading this into a Pandas dataframe? The sub keys of Feed, Spindle Speed, and Tool remain the same throug
Solution 1:
You were almost there. You have just to reset the multi_index and give the correct column names:
pd.DataFrame.from_dict({(i,j): dictionary[i][j]
foriin dictionary.keys()
forjin dictionary[i].keys()},
orient='index').reset_index().rename(
{'level_0': 'Program', 'level_1': 'Operation Number'}, axis=1)
Solution 2:
Run this line of code after importing pandas to configure your dataframes to not be "sparse":
pd.set_option('display.multi_sparse', False)
From pandas docs:
Option: display.multi_sparse Default: True Function: “Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups)
Output using first two groupings you provided:
Post a Comment for "Python - How To Load Nested Dictionary Into Pandas Dataframe?"