Passing Argument In Groupby.agg With Multiple Functions
Anyone knows how to pass arguments in a groupby.agg() with multiple functions? Bottom line, I would like to use it with a custom function, but I will ask my question using a built
Solution 1:
Use lambda
function:
q = 0.22
df1 = df.groupby('lvl_1')['value'].agg(['min','max',lambda x: x.quantile(q)])
print (df1)
minmax <lambda>
lvl_1
di 0.2754010.5300000.294589
fi 0.0543630.8488180.136555
Or is possible create f
function and set it name for custom column name:
q = 0.22
f = lambda x: x.quantile(q)
f.__name__ = 'custom_quantile'
df1 = df.groupby('lvl_1')['value'].agg(['min','max',f])
print (df1)
minmax custom_quantile
lvl_1
di 0.2754010.5300000.294589
fi 0.0543630.8488180.136555
Post a Comment for "Passing Argument In Groupby.agg With Multiple Functions"