How To Parse Labeled Values Of Columns Into A Pandas Dataframe (some Column Values Are Missing)?
The follow are two rows from my unlabeled dataset, a small subset: random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX AAA:COL:UVTWUVWDUWDUWDWW B
Solution 1:
This will do it:
text = """random1 147 sub1 95 34 dewdfa3 15000 -1238 SBAASBAQSBARSBATSBAUSBAXBELAAX AAA:COL:UVTWUVWDUWDUWDWW BBB:COL:F CCC:COL:GTATGTCA DDD:COL:K20 EEE:COL:54T GGG:COL:-30.5 HHH:COL:000.1 III:COL:2 JJJ:COL:0
random2 123 sub1 996 12 kwnc239 10027 144 LBPRLBPSLBRDLBSDLBSLLBWB AAA:COL:UWTTUTUVVUWWUUU BBB:COL:F DDD:COL:CACGTCGG EEE:COL:K19 FFF:COL:HCC16 GGG:COL:873 III:COL:-77 JJJ:COL:0 KKK:COL:0 LLL:COL:1 MMM:COL:212"""data = [line.split() for line in text.split('\n')]
data1 = [line[:9] for line in data]
data2 = [line[9:] for line in data]
# list of dictionaries from data2, where I parse the columnsdict2 = [[dict([d.split(':COL:') for d in d1]) for d1 in data2]
result = pd.concat([pd.DataFrame(data1),
pd.DataFrame(dict2)],
axis=1)
result.iloc[:, 9:]
Post a Comment for "How To Parse Labeled Values Of Columns Into A Pandas Dataframe (some Column Values Are Missing)?"