Updating Information In Dataframe Column
I have a filtered dataset, new_df, like this Label New_Label Username Look_up 59 1.0 True vald21 val 67 1.0 True 2512 2512 75 1.0
Solution 1:
You can try merging two dataframe and then using .assign
along with np.where
. When merging with outer
, the values not present will have NA
so np.where
with notnull()
can be used:
pd.merge(df, new_df, how='outer').assign(Label = lambda row:np.where(row['New_Label'].notnull(), 0, 1))
If you do not want New_Label
, you can drop the column with .drop('New_Label', axis=1)
. Something like below (if written in one line):
pd.merge(df, new_df, how='outer').assign( Label = lambda row: np.where(row['New_Label'].notnull(), 0, 1)).drop('New_Label', axis=1)
Solution 2:
If I understand your question right, you want to flip 'New_Label'
, convert it to int and assign it to 'Label'
:
new_df['Label'] = (new_df['New_Label']==False).astype(int)
Post a Comment for "Updating Information In Dataframe Column"